Impact Effects
Credit: Robert Marcus, H. Jay Melosh, and Gareth 
Collins 
Please note: the results below are estimates based on current (limited) 
understanding of the impact process and come with large uncertainties; they should be used 
with caution, particularly in the case of peculiar input parameters. All values are given to 
three significant figures but this does not reflect the precision of the estimate. 
IMPACT 1 
Your 
Inputs:Distance from Impact: 10.00 km = 6.21 miles 
Projectile 
Diameter: 2000.00 m = 6560.00 ft = 1.24 miles 
Projectile Density: 3000 kg/m
3 
Impact Velocity: 20.00 km/s = 12.42 miles/s 
Impact Angle: 45 degrees 
Target 
Density: 2500 kg/m
3 Target Type: Sedimentary Rock 
Energy:Energy before atmospheric entry: 2.51 x 
10
21 Joules = 6.00 x 10
5 MegaTons TNT 
The average interval 
between impacts of this size somewhere on Earth during the last 4 billion years is 3.1 x 
10
6years
Major Global 
Changes:The Earth is not strongly disturbed by the impact and loses 
negligible mass. 
The impact does not make a noticeable change in the Earth's rotation 
period or the tilt of its axis. 
The impact does not shift the Earth's orbit 
noticeably.
Crater 
Dimensions:Transient Crater Diameter: 19.5 km = 12.1 miles 
Transient Crater Depth: 6.89 km = 4.28 miles 
Final Crater Diameter: 28.8 km = 
17.9 miles 
Final Crater Depth: 0.814 km = 0.506 miles
The crater formed is a 
complex crater. 
The volume of the target melted or vaporized is 15.7 km
3 = 
3.77 miles
3 Roughly half the melt remains in the crater, where its average 
thickness is 52.7 meters = 173 feet 
Thermal 
Radiation: Time for maximum radiation: 1.36 seconds after impact 
Your position is inside the fireball. 
The fireball appears 617 times larger than the 
sun 
Thermal Exposure: 1.19 x 10
10 Joules/m
2 Duration of 
Irradiation: 353 seconds 
Radiant flux (relative to the sun): 33800 
Effects of Thermal Radiation: 
Clothing ignites 
Much of the body suffers third degree burns 
Newspaper ignites 
Plywood flames 
Deciduous trees ignite 
Grass ignites
Seismic Effects: 
The major seismic shaking will arrive at approximately 2 seconds. 
Richter Scale 
Magnitude: 8.5 
Mercalli Scale Intensity at a distance of 10 km: 
X. Most masonry 
and frame structures destroyed with their foundations. Some well-built wooden structures 
and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. 
Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on 
beaches and flat land. Rails bent slightly.  
XI. As X. Rails bent greatly. Underground pipelines completely out of service. 
 Ejecta: The ejecta will arrive 
approximately 45.2 seconds after the impact. 
Your position is beneath the 
continuous ejecta deposit. 
Average ejecta Thickness: 1290 m = 4230 ft 
Air Blast:  
The air blast will arrive at approximately 30.3 seconds. 
Peak Overpressure: 
8.79x107 Pa = 879 bars = 12500 psi 
Max wind velocity: 7540 m/s = 16900 mph 
Sound Intensity: 159 dB (Dangerously Loud) 
Damage Description:Multistory wall-bearing buildings will 
collapse. 
Wood frame buildings will almost completely collapse. 
Multistory steel-framed office-type buildings will suffer extreme frame distortion, incipient 
collapse. 
Highway truss bridges will collapse. 
Highway girder bridges will collapse. 
Glass windows will shatter. 
Cars and trucks will be largely displaced and grossly distorted and will require rebuilding 
before use. 
Up to 90 percent of trees blown down; remainder stripped of branches and 
leaves
IMPACT 2
Your 
Inputs:Distance from Impact: 10.00 km = 6.21 miles 
Projectile 
Diameter: 2000.00 m = 6560.00 ft = 1.24 miles 
Projectile Density: 3000 kg/m
3 
Impact Velocity: 50.00 km/s = 31.05 miles/s 
Impact Angle: 45 degrees 
Target 
Density: 2500 kg/m
3 Target Type: Sedimentary Rock 
Energy:Energy before atmospheric entry: 1.57 x 
10
22 Joules = 3.75 x 10
6 MegaTons TNT 
The average interval 
between impacts of this size somewhere on Earth during the last 4 billion years is 1.3 x 
10
7years
Major Global 
Changes:The Earth is not strongly disturbed by the impact and loses 
negligible mass. 
The impact does not make a noticeable change in the Earth's rotation 
period or the tilt of its axis. 
The impact does not shift the Earth's orbit 
noticeably.
Crater 
Dimensions:Transient Crater Diameter: 29.2 km = 18.1 miles 
Transient Crater Depth: 10.3 km = 6.4 miles 
Final Crater Diameter: 45.5 km = 28.2 
miles 
Final Crater Depth: 0.934 km = 0.58 miles
The crater formed is a complex 
crater. 
The volume of the target melted or vaporized is 98.3 km
3 = 23.6 
miles
3 Roughly half the melt remains in the crater , where its average thickness 
is 147 meters = 483 feet 
 Ejecta:Your 
position was inside the transient crater and ejected upon impact
IMPACT 3
Your Inputs:Distance from 
Impact: 10.00 km = 6.21 miles 
Projectile Diameter: 2000.00 m = 6560.00 ft = 1.24 
miles 
Projectile Density: 3000 kg/m
3 Impact Velocity: 70.00 km/s = 43.47 
miles/s 
Impact Angle: 45 degrees 
Target Density: 2500 kg/m
3 Target 
Type: Sedimentary Rock 
Energy:Energy 
before atmospheric entry: 3.08 x 1022 Joules = 7.35 x 106 MegaTons TNT 
The average 
interval between impacts of this size somewhere on Earth during the last 4 billion years is 2.1 
x 107years
Major Global Changes:The 
Earth is not strongly disturbed by the impact and loses negligible mass. 
The impact does 
not make a noticeable change in the Earth's rotation period or the tilt of its axis. 
The 
impact does not shift the Earth's orbit noticeably.
Crater 
Dimensions:  
Transient Crater Diameter: 33.8 km = 21 miles 
Transient Crater Depth: 12 km = 7.43 
miles 
Final Crater Diameter: 53.8 km = 33.4 miles 
Final Crater Depth: 0.982 km = 
0.61 miles
The crater formed is a complex crater. 
The volume of the target melted 
or vaporized is 193 km
3 = 46.2 miles
3 Roughly half the melt remains 
in the crater , where its average thickness is 214 meters = 703 feet 
  Ejecta:Your position was inside the transient crater 
and ejected upon impact
IMPACT 4
Your Inputs: 
Distance from Impact: 20.00 km = 12.42 miles 
Projectile Diameter: 200000.00 m = 656000.00 ft = 124.20 miles 
Projectile Density: 
3000 kg/m3 
Impact Velocity: 50.00 km/s = 31.05 miles/s 
Impact Angle: 45 
degrees 
Target Density: 2500 kg/m3 
Target Type: Sedimentary Rock 
Energy:
Energy before atmospheric 
entry: 1.57 x 1028 Joules = 3.75 x 1012 MegaTons TNT 
The 
average interval between impacts of this size is longer than the Earth's age. 
Such 
impacts could only occur during the accumulation of the Earth, between 4.5 and 4 billion 
years ago.
Major Global Changes:
The 
Earth is not strongly disturbed by the impact and loses negligible mass. 
The impact does 
not make a noticeable change in the Earth's rotation period or the tilt of its axis. 
The 
impact does not shift the Earth's orbit noticeably.
Crater 
Dimensions:
Transient Crater Diameter: 1060 km = 658 miles 
Transient Crater Depth: 375 km = 233 miles 
Final Crater Diameter: 2640 km = 
1640 miles 
Final Crater Depth: 3.17 km = 1.97 miles
The crater formed is a 
complex crater. 
The volume of the target melted or vaporized is 9.88X107 km3 
= 2.37X107 miles3 
Roughly half the melt remains in the crater , where its 
average thickness is 112 km = 69.5 miles
See: 
http://www.lpl.arizona.edu/~marcus/CollinsEtAl2005.pdf for the mathematics and 
http://www.lpl.arizona.edu/impacteffects/ for the actual 
program.
ASTEROID 2004 MN
An edited version of the 2004 
MN4 story originally posted on SPACE.com at 9:58 a.m. ET on Dec. 24:
Scientists 
said Thursday that a recently discovered asteroid has a chance of hitting Earth in the year 
2029, but that further observations would likely rule out the impact scenario. 
The 
asteroid is named 2004 MN4. It was discovered in June and spotted again this month. It is 
about a quarter mile (400 meters) wide
2004 MN4 is now being tracked very carefully by 
many astronomers around the world, and we continue to update our risk analysis for this 
object. Today's impact monitoring results indicate that the impact probability for April 13, 
2029 has risen to about 1.6 percent, which for an object of this size corresponds to a rating 
of 4 on the ten-point Torino Scale. Nevertheless, the odds against impact are still high, about 
60-to-1, meaning that there is a better than 98 percent chance that new data in the coming 
days, weeks, and months will rule out any possibility of impact in 2029.
With a half-dozen 
or so other asteroid discoveries dating back to 1997, scientists had announced long odds of 
an impact -- generating frightening headlines in some cases -- only to announce within hours 
or days that the impact chances had been reduced to zero by further observations. Experts 
have said repeatedly that they are concerned about alarming the public before enough data 
is gathered to project an asteroid's path accurately.
Asteroid 2004 MN4 is an unusual 
case in that follow-up observations have caused the risk assessment to climb -- from Torino 
level 2 to 4 -- rather than fall.
 
A VERSION IN WORD IS AVAILABLE ON THE SCHOOLPHYSICS USB